3,4-Methylenedioxymethamphetamine enhances kainic acid convulsive susceptibility.
نویسندگان
چکیده
Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3h), on 1day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (10-50μM) for 6 or 48h significantly increased basal Ca(2+), reduced basal Na(+) levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.
منابع مشابه
Loss of Hippocampal Neurons after Kainate Treatment Correlates with Behavioral Deficits
Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed conv...
متن کاملIntra-amygdaloid injection of kainic acid in rats with genetic absence epilepsy: the relationship of typical absence epilepsy and temporal lobe epilepsy.
We showed previously that genetic absence epilepsy rats from Strasbourg (GAERS) resist secondary generalization of focal limbic seizures after electrical kindling. We now investigate the effect of intra-amygdaloid injection of kainic acid, as another model of temporal lobe epilepsy, focusing on epileptogenesis, spike-and-wave discharges (SWDs), and the transition from basal to SWD states in GAE...
متن کاملPii: S0306-4522(98)00698-8
Administration of 3,4-methylenedioxymethamphetamine (4 × 20 mg/kg) to non-transgenic CD-1 mice caused marked depletion in dopamine, 3,4-dihydroxyphenylacetic acid and 5-hydroxytryptamine in the caudate–putamen. There were no significant changes in serotonergic markers in the hippocampus and frontal cortex. Homozygous and heterozygous copper/zinc superoxide dismutase transgenic mice show partial...
متن کامل(+/-)3,4-methylenedioxymethamphetamine, d-amphetamine, and cocaine impair delayed matching-to-sample performance by an increase in susceptibility to proactive interference.
This study compared the effects of (+/-)3,4-methylenedioxymethamphetamine, d-amphetamine, and cocaine on performance of rats in a delayed matching-to-sample procedure using a variety of indices of performance to determine the mechanism by which working memory task impairments arise. All 3 drugs produced an overall delay-independent decrease in accuracy rather than a delay-dependent increase in ...
متن کاملProfiling of Ecstasy Tablets Seized in Iran
In this study 50 samples of ecstasy tablets seized in Iran during the period of 2007 through 2008 were examined and their physical characteristics (appearance, marking, scored/not scored, color, weight, diameter, thickness) were determined. In order to determine the chemical characteristics of these tablets, color tests (Marquis test, Simon’s test, Chen’s test and Gallic acid test), Thin Layer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in neuro-psychopharmacology & biological psychiatry
دوره 54 شماره
صفحات -
تاریخ انتشار 2014